Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed.

نویسندگان

  • Satoshi Habuchi
  • Mircea Cotlet
  • Thomas Gensch
  • Teresa Bednarz
  • Sabina Haber-Pohlmeier
  • Jef Rozenski
  • Gunter Dirix
  • Jan Michiels
  • Jos Vanderleyden
  • Joachim Heberle
  • Frans C De Schryver
  • Johan Hofkens
چکیده

Recently, it has been shown that the red fluorescent protein DsRed undergoes photoconversion on intense irradiation, but the mechanism of the conversion has not yet been elucidated. Upon irradiation with a nanosecond-pulsed laser at 532 nm, the chromophore of DsRed absorbing at 559 nm and emitting at 583 nm (R form) converts into a super red (SR) form absorbing at 574 nm and emitting at 595 nm. This conversion leads to a significant change in the fluorescence quantum yield from 0.7 to 0.01. Here we demonstrate that the photoconversion is the result of structural changes of the chromophore and one amino acid. Absorption, fluorescence, and vibrational spectroscopy as well as mass spectrometry suggest that a cis-to-trans isomerization of the chromophore and decarboxylation of a glutamate (E215) take place upon irradiation to form SR. At the same time, another photoproduct (B) with an absorption maximum at 386 nm appears upon irradiation. This species is assigned as a protonated form of the DsRed chromophore. It might be a mixture of several protonated DsRed forms as there is at least two ways of formation. Furthermore, the photoconversion of DsRed is proven to occur through a consecutive two-photon absorption process. Our results demonstrate the importance of the chromophore conformation in the ground state on the brightness of the protein as well as the importance of the photon flux to control/avoid the photoconversion process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the first Transgenic Aquatic Animal in Iran by PCR-Based Method and Protein Analysis

In the recent years, there is evidence of training a red type of zebrafish which differs from wild-type in body color. There is not any document how it reaches to the ornamental fish farms of Iran but at first, it was a doubt it belongs to a morphotype or genetic modification (GM). First of all, a set primer was designed to validate zebrafish species. Mitochondrial 16srDNA was selected and ampl...

متن کامل

Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy.

The photophysics and photochemistry taking place in the DsRed protein, a recently cloned red fluorescent protein from a coral of the Discosoma genus, are investigated here by means of ensemble and single-molecule time-resolved detection and spectroscopic measurements. Ensemble time-resolved data reveal that 25% of the immature green chromophores are present in tetramers containing only this imm...

متن کامل

Single molecule fluorescence spectroscopy of mutants of the Discosoma red fluorescent protein DsRed

We studied the emission of mutants of the red fluorescent protein DsRed by room temperature single molecule fluorescence spectroscopy. Bulk samples of the DsRed variant E8 show mixed green and red fluorescence of equivalent intensities individually spectrally similar to arrested green and mature red fluorescent forms of DsRed. Investigations at the single molecule level indicate that, like DsRe...

متن کامل

جداسازی و همسانه‌سازی ژن ureE هلیکوباکتر پیلوری در ناقل بیانی pIRES2-DSRed به‌منظور ایجاد واکسن ژنی

Background and Aim: As one of the factors of gastric ulcers and cancer, Helicobacter pylori can live in the acidic environment of stomach for many years due to having urease enzyme. This enzyme requires Ni2+ and a group of auxiliary proteins such as ureE for its catalytic activity. Urease is not only a requisite factor to colonize the Helicobacter pylori but it is also pathogenic with diff...

متن کامل

The structure of the chromophore within DsRed, a red fluorescent protein from coral.

DsRed, a brilliantly red fluorescent protein, was recently cloned from Discosoma coral by homology to the green fluorescent protein (GFP) from the jellyfish Aequorea. A core question in the biochemistry of DsRed is the mechanism by which the GFP-like 475-nm excitation and 500-nm emission maxima of immature DsRed are red-shifted to the 558-nm excitation and 583-nm emission maxima of mature DsRed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 25  شماره 

صفحات  -

تاریخ انتشار 2005